DP-200T01-A: Implementing an Azure Data Solution kursus

Kursusmål

In this course, the students will implement various data platform technologies into solutions that are in line with business and technical requirements including on-premises, cloud, and hybrid data scenarios incorporating both relational and No-SQL data. They will also learn how to process data using a range of technologies and languages for both streaming and batch data.

The students will also explore how to implement data security including authentication, authorization, data policies and standards. They will also define and implement data solution monitoring for both the data storage and data processing activities. Finally, they will manage and troubleshoot Azure data solutions which includes the optimization and disaster recovery of big data, batch processing and streaming data solutions.

Audience profile
The primary audience for this course is data professionals, data architects, and business intelligence professionals who want to learn about the data platform technologies that exist on Microsoft Azure.

The secondary audience for this course is individuals who develop applications that deliver content from the data platform technologies that exist on Microsoft Azure.

Deltagere

In addition to their professional experience, students who take this training should have technical knowledge equivalent to the following courses:
  • Azure fundamentals

Kursusmateriale

Før kurset
  • Mulighed for at tale med en instruktør, der kan hjælpe dig med at finde det helt rigtige kursus.
På kurset
  • Undervisning af Danmarks mest erfarne instruktørteam i hyggelige og fuldt opdaterede kursuslokaler i centrum af København.
  • Et kursus bestående af en vekslen mellem teori og praktiske øvelser. Vi ved, hvor vigtigt det er, at du får tid til at arbejde med opgaverne i praksis, og derfor har vi altid fokus på hands-on i undervisningen.
  • Adgang til Microsofts digitale kursusmateriale (DMOC) samt Microsoft Labs Online.*
  • Fuld forplejning, som inkluderer morgenmad, friskbrygget kaffe, te, frugt, sodavand, frokost på en italiensk restaurant på Gråbrødretorv, kage, slik, og naturligvis Wi-Fi til dine devices.
  • Et kursuscertifikat med bevis på dine nye kvalifikationer.
Efter kurset
  • Adgang til vores gratis hotline, som betyder, at du op til et år efter kurset kan ringe eller skrive til os, hvis du har spørgsmål til de emner, der er blevet gennemgået på kurset.
  • Vores unikke tilfredshedsgaranti, som er din tryghed for at få fuldt udbytte af dit kursus.

Kurset bliver afholdt på dansk, men vi benytter Microsofts digitale materiale (DMOC), som er på engelsk. På kurset bliver der stillet en Surface tablet til rådighed, som kan anvendes til læsning af materialet. Du vil efterfølgende have adgang til materialet både online og lokalt. I tilfælde af at Microsoft laver en ny version af kursusmaterialet, vil du automatisk få adgang til det. Derudover vil du have adgang til øvelser via Microsoft Online Labs i 19 dage i alt, og du kan derfor fortsætte eller starte forfra på en øvelse hjemmefra, under eller efter kurset, alt efter behov.

Kursusindhold

Module 1: Azure for the Data Engineer
This module explores how the world of data has evolved and how cloud data platform technologies are providing new opportunities for business to explore their data in different ways. The student will gain an overview of the various data platform technologies that are available, and how a Data Engineers role and responsibilities has evolved to work in this new world to an organization benefit

Lessons
  • Explain the evolving world of data
  • Survey the services in the Azure Data Platform
  • Identify the tasks that are performed by a Data Engineer
  • Describe the use cases for the cloud in a Case Study

Lab : Azure for the Data Engineer
  • Identify the evolving world of data
  • Determine the Azure Data Platform Services
  • Identify tasks to be performed by a Data Engineer
  • Finalize the data engineering deliverables

After completing this module, students will be able to:
  • Explain the evolving world of data
  • Survey the services in the Azure Data Platform
  • Identify the tasks that are performed by a Data Engineer
  • Describe the use cases for the cloud in a Case Study
Module 2: Working with Data Storage
This module teaches the variety of ways to store data in Azure. The Student will learn the basics of storage management in Azure, how to create a Storage Account, and how to choose the right model for the data you want to store in the cloud. They will also understand how data lake storage can be created to support a wide variety of big data analytics solutions with minimal effort.

Lessons
  • Choose a data storage approach in Azure
  • Create an Azure Storage Account
  • Explain Azure Data Lake storage
  • Upload data into Azure Data Lake

Lab : Working with Data Storage
  • Choose a data storage approach in Azure
  • Create a Storage Account
  • Explain Data Lake Storage
  • Upload data into Data Lake Store

After completing this module, students will be able to:
  • Choose a data storage approach in Azure
  • Create an Azure Storage Account
  • Explain Azure Data Lake Storage
  • Upload data into Azure Data Lake

Module 3: Enabling Team Based Data Science with Azure Databricks
This module introduces students to Azure Databricks and how a Data Engineer works with it to enable an organization to perform Team Data Science projects. They will learn the fundamentals of Azure Databricks and Apache Spark notebooks; how to provision the service and workspaces and learn how to perform data preparation task that can contribute to the data science project.

Lessons
  • Explain Azure Databricks
  • Work with Azure Databricks
  • Read data with Azure Databricks
  • Perform transformations with Azure Databricks

Lab : Enabling Team Based Data Science with Azure Databricks
  • Explain Azure Databricks
  • Work with Azure Databricks
  • Read data with Azure Databricks
  • Perform transformations with Azure Databricks

After completing this module, students will be able to:
  • Explain Azure Databricks
  • Work with Azure Databricks
  • Read data with Azure Databricks
  • Perform transformations with Azure Databricks

Module 4: Building Globally Distributed Databases with Cosmos DB

In this module, students will learn how to work with NoSQL data using Azure Cosmos DB. They will learn how to provision the service, and how they can load and interrogate data in the service using Visual Studio Code extensions, and the Azure Cosmos DB .NET Core SDK. They will also learn how to configure the availability options so that users are able to access the data from anywhere in the world.

Lessons
  • Create an Azure Cosmos DB database built to scale
  • Insert and query data in your Azure Cosmos DB database
  • Build a .NET Core app for Cosmos DB in Visual Studio Code
  • Distribute your data globally with Azure Cosmos DB

Lab : Building Globally Distributed Databases with Cosmos DB
  • Create an Azure Cosmos DB
  • Insert and query data in Azure Cosmos DB
  • Build a .Net Core App for Azure Cosmos DB using VS Code
  • Distribute data globally with Azure Cosmos DB

After completing this module, students will be able to:
  • Create an Azure Cosmos DB database built to scale
  • Insert and query data in your Azure Cosmos DB database
  • Build a .NET Core app for Azure Cosmos DB in Visual Studio Code
  • Distribute your data globally with Azure Cosmos DB

Module 5: Working with Relational Data Stores in the Cloud
In this module, students will explore the Azure relational data platform options including SQL Database and SQL Data Warehouse. The student will be able explain why they would choose one service over another, and how to provision, connect and manage each of the services.

Lessons
  • Use Azure SQL Database
  • Describe Azure SQL Data Warehouse
  • Creating and Querying an Azure SQL Data Warehouse
  • Use PolyBase to Load Data into Azure SQL Data Warehouse

Lab : Working with Relational Data Stores in the Cloud
  • Use Azure SQL Database
  • Describe Azure SQL Data Warehouse
  • Creating and Querying an Azure SQL Data Warehouse
  • Use PolyBase to Load Data into Azure SQL Data Warehouse

After completing this module, students will be able to:
  • Use Azure SQL Database
  • Describe Azure Data Warehouse
  • Creating and Querying an Azure SQL Data Warehouse
  • Using PolyBase to Load Data into Azure SQL Data Warehouse

Module 6: Performing Real-Time Analytics with Stream Analytics
In this module, students will learn the concepts of event processing and streaming data and how this applies to Events Hubs and Azure Stream Analytics. The students will then set up a stream analytics job to stream data and learn how to query the incoming data to perform analysis of the data. Finally, you will learn how to manage and monitor running jobs.

Lessons
  • Explain data streams and event processing
  • Data Ingestion with Event Hubs
  • Processing Data with Stream Analytics Jobs

Lab : Performing Real-Time Analytics with Stream Analytics
  • Explain data streams and event processing
  • Data Ingestion with Event Hubs
  • Processing Data with Stream Analytics Jobs

After completing this module, students will be able to:
  • Explain data streams and event processing
  • Data Ingestion with Event Hubs
  • Processing Data with Stream Analytics Jobs
Module 7: Orchestrating Data Movement with Azure Data Factory
In this module, students will learn how Azure Data factory can be used to orchestrate the data movement and transformation from a wide range of data platform technologies. They will be able to explain the capabilities of the technology and be able to set up an end to end data pipeline that ingests and transforms data.

Lessons
  • Explain how Azure Data Factory works
  • Azure Data Factory Components
  • Azure Data Factory and Databricks

Lab : Orchestrating Data Movement with Azure Data Factory
Explain how Data Factory Works
Azure Data Factory Components
Azure Data Factory and Databricks

After completing this module, students will be able to:
  • Azure Data Factory and Databricks
  • Azure Data Factory Components
  • Explain how Azure Data Factory works

Module 8: Securing Azure Data Platforms
In this module, students will learn how Azure provides a multi-layered security model to protect your data. The students will explore how security can range from setting up secure networks and access keys, to defining permission through to monitoring across a range of data stores.

Lessons
  • An introduction to security
  • Key security components
  • Securing Storage Accounts and Data Lake Storage
  • Securing Data Stores
  • Securing Streaming Data

Lab : Securing Azure Data Platforms
  • An introduction to security
  • Key security components
  • Securing Storage Accounts and Data Lake Storage
  • Securing Data Stores
  • Securing Streaming Data

After completing this module, students will be able to:
  • An introduction to security
  • Key security components
  • Securing Storage Accounts and Data Lake Storage
  • Securing Data Stores
  • Securing Streaming Data
Module 9: Monitoring and Troubleshooting Data Storage and Processing
    In this module, the student will get an overview of the range of monitoring capabilities that are available to provide operational support should there be issue with a data platform architecture. They will explore the common data storage and data processing issues. Finally, disaster recovery options are revealed to ensure business continuity.

Lessons
  • Explain the monitoring capabilities that are available
  • Troubleshoot common data storage issues
  • Troubleshoot common data processing issues
  • Manage disaster recovery

Lab : Monitoring and Troubleshooting Data Storage and Processing
  • Explain the monitoring capabilities that are available
  • Troubleshoot common data storage issues
  • Troubleshoot common data processing issues
  • Manage disaster recovery

After completing this module, students will be able to:
Explain the monitoring capabilities that are available
Troubleshoot common data storage issues
Troubleshoot common data processing issues
Manage disaster recovery

Hvad siger vores kunder om os?

Se vores google reviews

Se vores Trustpilot reviews

Se vores facebook Reviews

Google Bussiness har vi en score på 4,8 af 5 fordelt på 132 Reviews

Trustpilot har vi en score 4,7 af 5 fordelt på 153 Reviews

Facebook har vi en score på 4,9 af 5 fordelt på 90 Reviews

  Se alle vores Reviews   

 

Hold dig opdateret med vores nyhedsbrev

Modtag nyheder, gode tilbud, tips og tricks med vores månedlige nyhedsbrev.

Vi har både et Office/Adobe nyhedsbrev og et nyhedsbrev for vores tekniske Microsoft kurser.

Her bor vi

Hovedindgang
Amagertorv 21
1160 København K
Kursusindgang
Læderstræde 22-26
1201 København K
Åbningstider
Mandag: 08.00 - 16.30 (Indgang for kursister i Læderstræde åbner 8.30) 
Tirsdag: 08.30 - 16.30
Onsdag: 08.30 - 16.30
Torsdag: 08.30 - 16.30
Fredag: 08.30 - 16.30

 

Kontaktoplysninger

 
Amagertorv 21
1160 København K