MOC 20767: Implementing a SQL Server Data Warehouse kursus

Det lærer du

Kurset er til dig, der ønsker at lære at anvende, designe og implementere et data warehouse og udvikle og opbygge ETL-processen, der overfører data fra kildesystem til data warehouse med Microsoft SQL Server. Er din profil mere brugerrettet, og ønsker du at få en bredere introduktion til data warehouse og ETL-processen med SSIS, kan du med fordel tilmelde dig kurserne ”Business Intelligence grundlæggende” og ”SSIS grundlæggende”.

På baggrund af kurset kan du implementere en data warehouse løsning og udvikle en ETL-løsning, der håndterer overførsel og rensning af data. Med implementeringen af et data warehouse er der derfor hurtig adgang til data, der kan anvendes til at udarbejde rapporter og analyser til gavn for forretningen.

Efter kurset vil du være i stand til at:
  • Beskrive data warehouse koncepter og arkitektur.
  • Vælge en optimal hardware platform til et data warehouse.
  • Designe og implementere et data warehouse.
  • Implementere et SQL Server data warehouse i Azure.
  • Implementere Data Flows i en SSIS pakke.
  • Implementere Control Flows i en SSIS pakke.
  • Foretage debugging og fejlfinde i SSIS pakker.
  • Implementere delta loads.
  • Implementere en ETL løsning, der understøtter delta loads.
  • Håndtere datarensning med Microsoft Data Quality Services.
  • Implementere Master Data Services.
  • Udvide SSIS med scripts og egne komponenter.
  • Distribuere og konfigurere SSIS pakker.

Det får du

Før kurset
  • Mulighed for at tale med en instruktør, der kan hjælpe dig med at finde det helt rigtige kursus.

På kurset
  • Undervisning af Danmarks mest erfarne instruktørteam i hyggelige og fuldt opdaterede kursuslokaler i centrum af København.
  • Et kursus bestående af en vekslen mellem teori og praktiske øvelser. Vi ved, hvor vigtigt det er, at du får tid til at arbejde med opgaverne i praksis, og derfor har vi altid fokus på hands-on i undervisningen.
  • Adgang til Microsofts digitale kursusmateriale (DMOC) samt Microsoft Labs Online*.
  • Fuld forplejning, som inkluderer morgenmad, friskbrygget kaffe, te, frugt, sodavand, frokost på en italiensk restaurant på Gråbrødretorv, kage, slik, og naturligvis Wi-Fi til dine devices.

Efter kurset
  • Adgang til vores gratis hotline, som betyder, at du op til et år efter kurset kan ringe eller skrive til os, hvis du har spørgsmål til de emner, der er blevet gennemgået på kurset.
  • Vores unikke tilfredshedsgaranti, som er din tryghed for at få fuldt udbytte af dit kursus.

Kurset bliver afholdt på dansk, men vi benytter Microsofts digitale materiale (DMOC), som er på engelsk. På kurset bliver der stillet en Surface tablet til rådighed, som kan anvendes til læsning af materialet. Du vil efterfølgende have adgang til materialet både online og lokalt. I tilfælde af at Microsoft laver en ny version af kursusmaterialet, vil du automatisk få adgang til det. Derudover vil du have adgang til øvelser via Microsoft Labs Online i 180 dage i alt, og du kan derfor fortsætte eller starte forfra på en øvelse hjemmefra, under eller efter kurset, alt efter behov.

Få det optimale ud af kurset

Kurset er et teknisk kursus og forudsætter et godt kendskab til relationelle databaser, Transact-SQL og evt. programmering.

Er du i tvivl om noget, så kontakt os på 33 14 71 44, undervisning@4d.dk eller via chatten her på siden. Vi glæder os til at se dig herinde!

Kursusindhold

Module 1: Introduction to Data Warehousing

This modul describes data warehouse concepts and architecture considerations.

Lessons

  • Overview of Data Warehousing
  • Considerations for a Data Warehouse Solution

Lab: Exploring a Data Warehouse Solution

After completing this module, you will be able to:

  • Describe the key elements of a data warehousing solution
  • Describe the key considerations for a data warehousing solution

Module 2: Planning Data Warehouse Infrastructure

This module describes the main hardware considerations for building a data warehouse.

Lessons

  • Considerations for Building a Data Warehouse
  • Data Warehouse Reference Architectures and Appliances

Lab: Planning Data Warehouse Infrastructure

After completing this module, you will be able to:

  • Describe the main hardware considerations for building a data warehouse
  • Explain how to use reference architectures and data warehouse appliances to create a data warehouse

Module 3: Designing and Implementing a Data Warehouse

This module describes how you go about designing and implementing a schema for a data warehouse.

Lessons

  • Logical Design for a Data Warehouse
  • Physical Design for a Data Warehouse

Lab: Implementing a Data Warehouse Schema

After completing this module, you will be able to:

  • Implement a logical design for a data warehouse
  • Implement a physical design for a data warehouse

Module 4: Columnstore IndexesThis module introduces Columnstore Indexes.

Lessons

  • Introduction to Columnstore Indexes
  • Creating Columnstore Indexes
  • Working with Columnstore Indexes

Lab: Using Columnstore Indexes

After completing this module, you will be able to:

  • Create Columnstore indexes
  • Work with Columnstore Indexes

Module 5: Implementing an Azure SQL Data Warehouse

This module describes Azure SQL Data Warehouses and how to implement them.

Lessons

  • Advantages of Azure SQL Data Warehouse
  • Implementing an Azure SQL Data Warehouse
  • Developing an Azure SQL Data Warehouse
  • Migrating to an Azure SQL Data Warehouse

Lab: Implementing an Azure SQL Data Warehouse

After completing this module, you will be able to:

  • Describe the advantages of Azure SQL Data Warehouse
  • Implement an Azure SQL Data Warehouse
  • Describe the considerations for developing an Azure SQL Data Warehouse
  • Plan for migrating to Azure SQL Data Warehouse

Module 6: Creating an ETL Solution

At the end of this module you will be able to implement data flow in a SSIS package.

Lessons

  • Introduction to ETL with SSIS
  • Exploring Source Data
  • Implementing Data Flow

Lab: Implementing Data Flow in an SSIS Package

After completing this module, you will be able to:

  • Describe ETL with SSIS
  • Explore Source Data
  • Implement a Data Flow

Module 7: Implementing Control Flow in an SSIS Package

This module describes implementing control flow in an SSIS package.

Lessons

  • Introduction to Control Flow
  • Creating Dynamic Packages
  • Using Containers

Lab: Implementing Control Flow in an SSIS Package

After completing this module, you will be able to:

  • Describe control flow
  • Create dynamic packages
  • Use containers

Module 8: Debugging and Troubleshooting SSIS Packages

This module describes how to debug and troubleshoot SSIS packages.

Lessons

  • Debugging an SSIS Package
  • Logging SSIS Package Events
  • Handling Errors in an SSIS Package

Lab: Debugging and Troubleshooting an SSIS Package

After completing this module, you will be able to:

  • Debug an SSIS package
  • Log SSIS package events
  • Handle errors in an SSIS package

Module 9: Implementing an Incremental ETL Process

This module describes how to implement an SSIS solution that supports incremental DW loads and changing data.

Lessons

  • Introduction to Incremental ETL
  • Extracting Modified Data
  • Temporal Tables

Lab : Extracting Modified DataLab : Loading Incremental Changes

After completing this module, you will be able to:

  • Describe incremental ETL
  • Extract modified data
  • Describe temporal tables

Module 10: Enforcing Data Quality

This module describes how to implement data cleansing by using Microsoft Data Quality services

Lessons

  • Introduction to Data Quality
  • Using Data Quality Services to Cleanse Data
  • Using Data Quality Services to Match Data

Lab: Cleansing DataLab : De-duplicating Data

After completing this module, you will be able to:

  • Describe data quality services
  • Cleanse data using data quality services
  • Match data using data quality services
  • De-duplicate data using data quality services

Module 11: Using Master Data Services

This module describes how to implement master data services to enforce data integrity at source

Lessons

  • Master Data Services Concepts
  • Implementing a Master Data Services Model
  • Managing Master Data
  • Creating a Master Data Hub

Lab: Implementing Master Data Services

After completing this module, you will be able to:

  • Describe the key concepts of master data services
  • Implement a master data service model
  • Manage master data
  • Create a master data hub

Module 12: Extending SQL Server Integration Services (SSIS)

This module describes how to extend SSIS with custom scripts and components

Lessons

  • Using Custom Components in SSIS
  • Using Scripting in SSIS

Lab: Using Scripts and Custom Components

After completing this module, you will be able to:

  • Use custom components in SSIS
  • Use scripting in SSIS

Module 13: Deploying and Configuring SSIS Packages

This module describes how to deploy and configure SSIS packages.

Lessons

  • Overview of SSIS Deployment
  • Deploying SSIS Projects
  • Planning SSIS Package Execution

Lab: Deploying and Configuring SSIS Packages

After completing this module, you will be able to:

  • Describe an SSIS deployment
  • Deploy an SSIS package
  • Plan SSIS package execution

Module 14: Consuming Data in a Data Warehouse

This module describes how to debug and troubleshoot SSIS packages.

Lessons

  • Introduction to Business Intelligence
  • Introduction to Reporting
  • An Introduction to Data Analysis
  • Analyzing Data with Azure SQL Data Warehouse

Lab: Using Business Intelligence Tools

After completing this module, you will be able to:

  • Describe at a high level business intelligence
  • Show an understanding of reporting
  • Show an understanding of data analysis
  • Analyze data with Azure SQL data warehouse

Kontaktoplysninger

Adresse
Amagertorv 21
1160 København K